Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.

نویسنده

  • Eric D Tytell
چکیده

Fishes have an enormous diversity of body shapes and fin morphologies. From a hydrodynamic standpoint, the functional significance of this diversity is poorly understood, largely because the three-dimensional flow around swimming fish is almost completely unknown. Fully three-dimensional volumetric flow measurements are not currently feasible, but measurements in multiple transverse planes along the body can illuminate many of the important flow features. In this study, I analyze flow in the transverse plane at a range of positions around bluegill sunfish Lepomis macrochirus, from the trailing edges of the dorsal and anal fins to the near wake. Simultaneous particle image velocimetry and kinematic measurements were performed during swimming at 1.2 body lengths s(-1) to describe the streamwise vortex structure, to quantify the contributions of each fin to the vortex wake, and to assess the importance of three-dimensional flow effects in swimming. Sunfish produce streamwise vortices from at least eight distinct places, including both the dorsal and ventral margins of the soft dorsal and anal fins, and the tips and central notched region of the caudal fin. I propose a three-dimensional structure of the vortex wake in which these vortices from the caudal notch are elongated by the dorso-ventral cupping motion of the tail, producing a structure like a hairpin vortex in the caudal fin vortex ring. Vortices from the dorsal and anal fin persist into the wake, probably linking up with the caudal fin vortices. These dorsal and anal fin vortices do not differ significantly in circulation from the two caudal fin tip vortices. Because the circulations are equal and the length of the trailing edge of the caudal fin is approximately equal to the combined trailing edge length of the dorsal and anal fins, I argue that the two anterior median fins produce a total force that is comparable to that of the caudal fin. To provide additional detail on how different positions contribute to total force along the posterior body, the change in vortex circulation as flow passes down the body is also analyzed. The posterior half of the caudal fin and the dorsal and anal fins add vortex circulation to the flow, but circulation appears to decrease around the peduncle and anterior caudal fin. Kinematic measurements indicate that the tail is angled correctly to enhance thrust through this interaction. Finally, the degree to which the caudal fin acts like a idealized two-dimensional plate is examined: approximately 25% of the flow near the tail is accelerated up and down, rather than laterally, producing wasted momentum, a loss not present in ideal two-dimensional theories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus).

For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has...

متن کامل

Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, Lepomis macrochirus.

There are approximately 50 muscles that control tail fin shape in most teleost fishes, and although myotomal muscle function has been extensively studied, little work has been done on the intrinsic musculature that controls and shapes the tail. In this study we measured electrical activity in intrinsic tail musculature to determine if these muscles are active during steady rectilinear locomotio...

متن کامل

Wake dynamics and fluid forces of turning maneuvers in sunfish.

While experimental analyses of steady rectilinear locomotion in fishes are common, unsteady movement involving time-dependent variation in heading, speed and acceleration probably accounts for the greatest portion of the locomotor time budget. Turning maneuvers, in particular, are key elements of the unsteady locomotor repertoire of fishes and, by many species, are accomplished by generating as...

متن کامل

Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement.

The fast-start escape response is critically important to avoid predation, and axial movements driving it have been studied intensively. Large median dorsal and anal fins located near the tail have been hypothesized to increase acceleration away from the threat, yet the contribution of flexible median fins remains undescribed. To investigate the role of median fins, C-start escape responses of ...

متن کامل

Understanding the Hydrodynamics of Swimming: From Fish Fins to Flexible Propulsors for Autonomous Underwater Vehicles

The research effort described here is concerned with developing a maneuvering propulsor for an autonomous underwater vehicle (AUV’s) based on the mechanical design and performance of sunfish pectoral fin. Bluegill sunfish (Lepomis macrochirus) are highly maneuverable bony fishes that have been the subject of a number of experimental analyses of locomotor function [5, 6]. Although swimming gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 209 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2006